[image: image1.png]
Copy No. _________

MRC-N-1021

TM

FINAL DRAFT

[image: image9.png]
Mission Research Corporation

[image: image3.png]
DQGAP Release 1

Programmer’s Reference Document

[image: image2.png]
David C. Terry

20 April 1999

Mission Research Corporation

735 State Street, P.O. Drawer 719

Santa Barbara, California 93102

Contents

SECTION 1
DQGAP Overview

1

SECTION 2
DQGAP Code Description

3

SECTION 3
Code Components and Flow

5

SECTION 4
Algorithm Examples

9

APPENDIX A
Listing of dqgap.h
15

Figures

Figure 1
DQGAP Component Flow Diagram

 5

Figure 2
DQGAP Min/Max Test

10

Figure 3
Dead Signal Test

11

Figure 4
Time Gap Test

12

Figure 5
Outlier Point Density Test

13

Figure 6
Instrument Cross-Comparisons

14

Section 1
DQGAP Overview

DQGAP, or “Data Quality – GRAMS Automated Procedure,” is designed to analyze a GRAMS a0 data stream within a completely automated data collection, monitoring, and processing system. As part of the Atmospheric Radiation Measurement (ARM) program’s effort to archive vast amounts of broadband solar radiometer data, Mission Research Corporation (MRC) has developed DQGAP in an effort to enhance the utility of GRAMS to the scientific user community. GRAMS data is automatically calibrated from raw voltage to W/m2 and a suite of data quality enhancement algorithms are applied. Detected outliers are so flagged, and both 60-second and 10-minute averages of non-flagged data are output.

This Programmer’s Reference Document describes the DQGAP code construction in enough detail that an experienced analyst might successfully modify the code. Algorithm components are described, subroutines identified and code flow is diagrammed. Each data quality enhancement test is described individually and exemplified.

The DQGAP code is written entirely in generic C language. The industry-standard C compiler, gcc, will compile the package without the use of any special flags. The only required external library is netcdf (current version 3.3.1), the common format ARM uses for input/output data files. The code has been implemented on both SUN Sparcstations as well as PCs running the Linux operating system. Testing has been underway for approximately one year; hence, GRAMS data for the entirety of 1998 has been collected and processed. Test results may be accessed online directly from MRC’s web page, http://arm.mrcsb.com/dq/.

Section 2
DQGAP Code Description

The DQGAP code is distributed in 13 .c files and 2 .h files. Of the latter, the version.h is simply a one-line indication of the revision number, currently 1.038 (20 Apr 99). The principal include file, dqgap.h, contains: (a) definitions of structures, (b) parameter constants, and (c) subroutine stubs. The “main” procedure is located in dqgap.c. An execution-level makefile is provided to invoke compilation. The main include file, dqgap.h, is listed in the Appendix.

Execution of DQGAP is simple by design. Command-line arguments identify both input and output datasets. Usage is as follows:

dqgap –in_grams <filename> -in_gramscal <filename> -in_mfrsr <filename>

-out_grams <filename> -out_gramscal <filename>

-grams_avg60 <filename> -grams_avg600 <filename>

-gramscal_avg60 <filename> -gramscal_avg600 <filename>.

While the filename arguments are optional, at least one of Grams or Gramscal must be specified. The Mfrsr is optional, and Grams x Mfrsr instrument cross-comparison is only used in the absence of Grams x Gramscal. Future cross-comparison dataset types, -in_sws and –in_rss, are currently inactive.

The input file types are netcdf files, such as those provided by the ARM archive. The output files are netcdf as well, with out_grams and out_gramscal containing the entire time domain defined by the parent netcdf. The _avg60 and _avg600 outputs, available for either grams or gramscal or both, contain the 60-second and 10-minute averages with cross-referenced data fields (grams, gramscal and/or mfrsr) included in the common averaged time domain.

Garbled arguments, or those not explicitly indicated above, result in a Usage output message (which essentially echos the command-line argument list) to standard error and termination of further analysis.

Section 3
Code Components and Flow

[image: image4.png][image: image5.png]
[image: image6.png]
[image: image7.png]
Figure 1. DQGAP component flow diagram.

The general top-level code flow for DQGAP is presented above in Figure 1. The main() routine, contained within the file dqgap.c, calls the sequence of routines indicated. Note the parallel netcdf ingest sequences for GRAMS and MFRSR independently. Moreover, the GRAMS sequence may be repeated in the event of two datasets, which we refer to as GRAMS and GRAMSCAL.

As DQGAP begins execution in main(), argument parsing (detailed in section 2) occurs for the external command line. Garbled input directs the code to Usage(), which prints out an error message equivalent to “try again.”

For each input GRAMS dataset, the IsGramscal routine determines whether the dataset is of type GRAMS or type GRAMSCAL. The two instruments have different dark voltage characteristics and different calibration curves. Either or both may be specified (i.e., none would not lead to a useful analysis).

The logic for netcdf ingestion, applicable to both GRAMS and MFRSR, is as follows. Each variable within the netcdf file is read independently into a linked list of structure type Element, as defined in dqgap.h. From this raw data, the Julian date array is created and used as an abcissa coordinate. The get_tsbr routine then scales the GRAMS Total Solar Broadband Radiation (TSBR) into microvolts, while the get_bb similarly extracts the MFRSR Broadband hemispheric radiation. These new data are put into the Netcdf structures for each dataset.

After the raw data in the Element structures are processed, and the Netcdf structures are created, the free_elements routine is executed to clean up unnecessary raw data. At this point, all useful data for forthcoming analysis is contained in a Netcdf data structure.

Following data ingestion, the grams_tests and mfrsr_tests are applied to each respective dataset. The mfrsr tests include: (1) dead_test, which looks any consecutive sequence of 8 or more datapoints that have essentially no variance; (2) min-max test, in which solar irradiances outside of the interval [0,1500W/m2] are flagged; (3a) two-sigma and three-delta tests, which scan across the dataset point-by-point, locating all outliers in a forward-looking 40 minute window. As outliers are flagged, they are eliminated from future scans. Any two-sigma points from the (unflagged) mean are identified as outliers, as well as any point with a consecutive-pointwise jump exceeding three times the average interval’s point-to-point variation (absolute value thereof). Finally, (3b) the outlier point density (OPD) test is applied. This latter test counts the number of outliers identified in each scan window, normalized by the number of data in that window, to get a point density. When the OPD is small (less than 20%), they are retained as data quality issues. On the other hand, when OPD > 0.2, it is indicative of solar radiation obscurations typical of variable cloudiness. In that case, the two-sigma and three-delta outliers are unflagged in the output dataset.

The grams_tests proceed much as the mfrsr_tests, except that the two-sigma and three-delta window occurs within one minute scan intervals. This is representative of the sampling rate difference between GRAMS and MFRSR. Prior to GRAMS testing, however, the dark voltage is subtracted and the raw data is calibrated into units of W/m2. Note that the MFRSR broadband remains in units of counts. Grams calibration is detailed elsewhere in a separate document (Preliminary Grams Calibration, Mission Research Corporation). The GRAMS test sequence has an additional test – the time-gap check – in place as well. The sequence is: (1) dead_test, described above; (2) min-max test, using [0,1500W/m2]; (3) two-sigma, three-delta, and outlier point density; and (4) gap_test, which is specific to GRAMS. The latter test looks for every occurance of a skipped data point in the netcdf time domain. At the beginning of resumed data following a missed collection interval, the I(t) calibrated profile is examined for large delta-I values, exceeding 300 W/m2. When this occurs, sequential data thereafter are flagged for as long as |I(tn+1)-I(tn)| < |I(tn)-I(tn-1)| remains satisfied; i.e., the solar intensities form a telescopically decreasing delta-intensity profile in time. These time gap outliers seem peculiar to the GRAMS instrument, and are of unknown origin.

Once individual grams_tests and mfrsr_tests are performed, the 10-minute time averaging proceeds within the grams_avg routine. Foremost is the production of a 10-minute output dataset of unflagged datapoints. In the event both GRAMS and GRAMSCAL data exist, a cross-comparison is made using a statistical F-test. Within each 10-minute interval, if the TSBR standard deviation of one population differs from the other by 50% or more, all two-sigma outliers in the larger variance set are flagged as ftest outliers. In the absence of both GRAMS and GRAMSCAL, the MFRSR data is used in the same F-test algorithm. This results in either GRAMSxMFRSR or GRAMSCALxMFRSR comparisons. Whenever the GRAMS (or GRAMSCAL) data interval is the higher variance set, ftest outliers are flagged.

The 60-second time averaging is then performed. No F-test is performed on this time interval, just creation of the output 60-second averaged dataset.

The grams_mfrsr is an optional algorithm which proceeds in the absence of GRAMSxGRAMSCAL testing. It is controlled by the GxM_SLOPE_TEST flag specified in dqgap.h (see Appendix), which is by default turned off (i.e., 0) in the distribution version of the code. Rather than use a statistical F-test to cross-compare datasets, a linear fit between the two domains is used and two-sigma deviants are identified. MRC has determined that the statistical F-test produces superior data quality discrimination.

Finally, the put_grams routine creates the output netcdf datasets. This includes the unaveraged GRAMS and/or GRAMSCAL outputs, as specified on the command line, as well as 60-second and 10-minute averaged data.

Section 4
Algorithm Examples

The DQGAP test sequence proceeds in this order:

(1) Min-max test, flagging data outside of [0,1500 W/m2];

(2) Dead signal, flagging a flat instrument response;

(3) Time gap, flagging transient GRAMS data outages which cause anomalous fluctuations;

(4) Outlier Point Density, flagging 2 and 3 outliers whenever OPD<20%, and effectively discriminating data quality issues from variably obscure conditions;

(5) Statistical F-test instrument cross-comparisons, either GRAMSxGRAMSCAL or GRAMSxMFRSR or GRAMSCALxMFRSR.

Each test is illustrated in one of the cases below.

[image: image8.png]
Figure 2. DQGAP Min/Max Test. An example of DQGAP output that shows a point failing the min/max test. The black cross, at about 18.25 hours GMT, just exceeds the 1500 W/m2 level.

Figure 3. Dead Signal Test. The sequence of black points on the right of the figure that appear to be near horizontal lines, one high and one low, are dead signal points.

Figure 4. Time Gap Test. Time gap outliers are shown as x’s in the figure. Whenever the GRAMS instrument resumes measurement after a hiatus, it tends to produce a series of 10-20 data points rapidly falling from some undetermined high value toward the true flux. This behavior is common, since transient outages are common.

Figure 5. Outlier Point Density Test. OPD outliers shown as ’s in the above figures. The OPD test is designed to flag those outliers with temporal density low enough to be considered as due to climatically uninteresting causes. The bottom plot shows the dependence with Air Mass, making the sequence of outliers around m=2.7 particularly obvious. Since the direct radiation component dominates the diffuse on unobscured days, as 3/1/99 appears to be in the AM hours, and the total solar broadband radiation equals direct * cos(zenith angle) + diffuse, the plot ordinate is scaled by solar zenith secant.

Figure 6. Instrument Cross-Comparisons. GRAMS vs. GRAMSCAL outliers are shown as ’s in the above figures. Two nearly co-located instruments are expected to measure similar total solar broadband radiation signals. A statistical F-test, which looks for significant population variance differences across common 10-minute intervals, flags 2 outliers within the 10-minute interval of the instrument having the higher variance. Note on the bottom plot, near 1600 hours GMT, the GRAMSCAL instrument detects diminished TSBR values undetected by the GRAMS at left. DQGAP makes a similar F-test instrument cross-comparison using MFRSR uncalibrated broadband when both GRAMS and GRAMSCAL are not available.
Appendix A
Listing of dqgap.h
#include "version.h"

/*

 MOD: dqgap.h

 BY: David C. Terry

 REV: 24 Feb 99

 Include file for dqgap.c & routine thereof.

 Contains constants, structures and stubs.

*/

#define BUG 1

#define SPD (double)86400 /* seconds per day */

#define BIG 9999999999. /* just a big # */

#define DEAD_MICROVOLTS .003 /* dead signal threshold */

#define DEAD_SECONDS 20 /* dead scanning window */

#define DEAD_NPTS 5 /* minimum # points needed to flag any */

#define MAX_GAP_PTS 60 /* gap_test points beyond gap detection */

#define DELTA_IRRAD 300 /* large |delta-I| threshhold */

#define USE_NPTS 100 /* minimum useful number pts to analyze grams */

#define SZS_MAX 15 /* maximum used in analysis */

#define GAP_SECONDS 60 /* averaging window size for sigma/delta tests */

#define GRAMS_AVG 300 /* averaging window size for OPD test */

#define OPD_THRESHOLD 0.2 /* threshold of OPD low-density outliers */

#define MIN_GRAMS 0 /* W/m2 */

#define MAX_GRAMS 1500 /* W/m2 */

#define GxMFRSR 0 /* flag grams based upon GxMFRSR slope */

#define GxM_SLOPE_TEST 0.3 /* if non-zero, tests GxM slope against 1+- */

#define SIGMA_DELTA_FLAG 128 /* never left set */

#define MIN_MAX_GRAMS 1

#define CODE_BLUE_FLAG 2

#define OPD_SMALL_FLAG 4

#define TIME_GAP_FLAG 8

#define GxGC_FTEST_FLAG 16

#define MFRSR_FTEST_FLAG 32

#define SWS_TEST_FLAG 64

#define SLOPE_TEST_FLAG 2

#define MISSING_DATA_FLAG -88888

#define CREATE_MISSING_XREF 1

static char *dqgap_flags[]={"min/max bounds outlier",

 "dead signal outlier",

 "low outlier point density",

 "time gap outlier",

 "grams vs. gramscal outlier",

 "grams vs. mfrsr outlier",

 "grams vs. sws outlier",

 "unused"};

#define LPOLY 2 /* Degree of Langley polynomial fit */

#define MFR_POLY 1 /* MFRSR x GRAMS curvefit order */

#define SMALL_IRRAD 10 /* W/m2 -- resolution of any tests */

#define FTEST 2.25 /* Sean Moore constant = 1.5 squared */

#define VARIANCE_MIN 10 /* Minimum GRAMS variance, (w/m2)**2 */

#define FTEST_MIN_PTS 10 /* Minimum # points for FTEST */

#define FTEST_SECONDS 600 /* Time window for FTEST averages */

#define PL4TAG "!PL4LINE" /* PL4 keyword */

/* valid args */

static char *ParseArgs[]={"-in_grams","-in_gramscal",

 "-in_mfrsr","-in_sws","-in_rss",

 "-web_dir","-out_grams","-out_gramscal",

 "-grams_avg60","-grams_avg600",

 "-gramscal_avg60","-gramscal_avg600",

 "-signal","-fiducial"};

/* transfer these cdf variables to Elements */

static char *KeepCdf[]={

"tsbr_signal","tsbr_irradiance",

"tsbr_avg60_irradiance",

"tsbr_avg600_irradiance",

"xref_grams_irradiance",

"xref_mfrsr_irradiance",

"tsbr_avg60_variance",

"tsbr_avg600_variance",

"base_time","time_offset","sza",

"lat","lon","dqtest","dqflag",

"hemisp_broadband"

 };

/* individual netcdf variable */

typedef struct _Element {

 char *name;

 char *type;

 int Ndim; /* 0 scalar; else 1 or 2D for array size */

 nc_type xtype; /* 1-6: uchar, char, short, int, float, double */

 unsigned int *Dim; /* for 1D, Dim[0] is npts, etc. */

 int *Id;

 int size;

 struct _Element *next;

 void *Buf;

} Element;

/* useful linked list of comments */

typedef struct _Comment {

 char *text;

 char *type;

 struct _Comment *next;

} Comment;

/* information enough for just about any variable! */

typedef struct _Signal {

 int npts;

 float *signal;

 char *name;

 Comment *info;

 struct _Signal *next;

} Signal;

/* composite info about a netcdf file */

typedef struct _netcdf {

 char *fname, *fout;

 int id, dims, vars, npts, month, day, year, type;

 long epoch, base_time;

 double j0, lat, lon;

 int seconds, scale, zenith;

 float *sza;

 double *Julian, *Szs, *Signal, *Mass, *Cal;

 long dqtest, *Flags, *Obscure;

 Element *Data;

 Comment *Others;

 Comment *Fits;

 Comment *Avgs;

 struct _avg *Average;

} Netcdf;

/* composite info about data averages */

typedef struct _avg {

 Netcdf *Grams;

 Netcdf *Gramscal;

 Netcdf *Mfrsr;

 char *fname;

 int npts, zenith, seconds;

 double *Julian, *Szs, *Mass;

 long *Obscure;

 float *grams, *gramscal, *mfrsr; /* time-averaged data */

 float *grams_var, *gramscal_var, *mfrsr_var; /* & their variances */

 struct _avg *next;

 } Avg;

/* standard functions */

#ifndef PI

#define PI 3.141592653589793

#endif

#define NEW(one) ((one*)calloc(1,sizeof(one)))

#define MAX(x,y) ((x) < (y) ? ((y)) : (x))

#define MIN(x,y) ((x) > (y) ? ((y)) : (x))

#define ABS(x) ((x) < 0 ? (-(x)) : (x))

#define DEGRAD(x) ((x)*PI/180.)

#define RADDEG(x) ((x)*180./PI)

#define floor(x) ((int)(x))

/* stubs */

long JulDay (int, int, int);

int CalDay (double, int*, int*, int*);

void *get_data(int, int, int);

void get_julian(Netcdf*);

Netcdf *get_netcdf (char*);

double get_szs (double, int, double, double);

double get_sza (double, int, double, double);

double get_am (double, long, double, double);

double dindex (double dx, int npts, double *xbuf);

int axb(double *A, double *b, int npts);

double ixpolyfit (int totpts,int *ix,double *x,double *y,int n,double **poly);

double polyf (int n, double *b, double x);

void ftest (float*,int,float*,int,float*,float*);

void ftest0 (float*,int,float*,int,float*);

void ftest1 (float*,int,float*,int,float*,float*,float*,float*,float*);

int IsGramscal (char*);

double DarkCurrent (char*);

double SowleCal (char*, double, double);

int dead_test (double*, double*, double*, int, double, double, int, long*);

void grams_tests (double*, double*, double*, double*, int,

 char*, char*, long**, double**, long*, Comment**, char*);

void grams_mfrsr (Netcdf*,Netcdf*,char*);

void mfrsr_tests (double*,double*,double*,int,long**);

int gap_test (double*,double*,double*,int,long*);

int slope_test (double*,double*,double*,int,long*);

void put_grams (Netcdf*);

void add_flag (long*,int);

void add_comment (Comment**,char*,char*);

void dmck (int,int,char*,void**);

void pl4line (FILE*,int,double*,double,int);

void gapflags (char*,long*,int);

void free_elements (Netcdf*);

void get_bb (Netcdf*);

void get_tsbr (Netcdf*);

void grams_avg (int,Netcdf*,Netcdf*,Netcdf*,char*,int,int,int);

	

	Dqgap.c: main(int argc, char **argv)

	Usage()

					Get_netcdf (GRAMS)

		Get_netcdf(MFRSR)

		

					IsGramscal(GRAMS)

		Get_bb(MFRSR)

					Get_tsbr(GRAMS)

		Free_elements(MFRSR)

					Free_elements(GRAMS)

		Mfrsr_tests(MFRSR)

						Grams_tests(GRAMS)

			Grams_avg (10 min)

			Grams_avg (60 sec)

			Grams_Mfrsr

			Put_Grams

10

 11

